In shape analysis, one of the fundamental problems is to align curves or surfaces before computing a (geodesic) distance between these shapes. To find the optimal reparametrization realizing this alignment is a computationally demanding task which leads to an optimization problem on the diffeomorphism group. In this paper, we construct approximations of orientation-preserving diffeomorphisms by composition of elementary diffeomorphisms to solve the approximation problem. We propose a practical algorithm implemented in PyTorch which is applicable both to unparametrized curves and surfaces. We derive universal approximation results and obtain bounds for the Lipschitz constant of the obtained compositions of diffeomorphisms.


翻译:在形状分析中,一个根本问题是,在计算这些形状之间的(地貌)距离之前,对曲线或表面进行对齐。要找到实现这种对齐的最佳再平衡,就是一项计算上要求很高的任务,这会导致地貌畸形群体出现优化问题。在本文中,我们用基本地貌形态的构成来构建方向-保持地貌形态的近似值,以解决近似问题。我们提议在PyTorch实施一种实用的算法,既适用于未对称的曲线和表面。我们得出普遍近似结果,也为Lipschitz常数获得的地貌形态构成的界限。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月15日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2022年9月15日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员