We investigate data-driven texture modeling via analysis and synthesis with generative adversarial networks. For network training and testing, we have compiled a diverse set of spatially homogeneous textures, ranging from stochastic to regular. We adopt StyleGAN3 for synthesis and demonstrate that it produces diverse textures beyond those represented in the training data. For texture analysis, we propose GAN inversion using a novel latent domain reconstruction consistency criterion for synthesized textures, and iterative refinement with Gramian loss for real textures. We propose perceptual procedures for evaluating network capabilities, exploring the global and local behavior of latent space trajectories, and comparing with existing texture analysis-synthesis techniques.


翻译:我们调查通过分析和合成与基因对抗网络进行数据驱动纹理模型的模型,为了进行网络培训和测试,我们汇编了一套从随机到常规的空间均匀质谱。我们采用了StyleGAN3来合成,并证明它产生的纹理比培训数据中描述的要多。关于纹理分析,我们建议GAN倒置使用一个新的潜在领域综合纹理重建一致性标准,并与Gramian损失相迭完善真实纹理。我们提出了评估网络能力、探索潜在空间轨迹的全球和地方行为以及与现有的纹理分析合成技术进行比较的认知程序。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员