Large scale Bayesian nonparametrics (BNP) learner such as stochastic variational inference (SVI) can handle datasets with large class number and large training size at fractional cost. Like its predecessor, SVI rely on the assumption of conjugate variational posterior to approximate the true posterior. A more challenging problem is to consider large scale learning on non-conjugate posterior. Recent works in this direction are mostly associated with using Monte Carlo methods for approximating the learner. However, these works are usually demonstrated on non-BNP related task and less complex models such as logistic regression, due to higher computational complexity. In order to overcome the issue faced by SVI, we develop a novel approach based on the recently proposed variational maximization-maximization (VMM) learner to allow large scale learning on non-conjugate posterior. Unlike SVI, our VMM learner does not require closed-form expression for the variational posterior expectatations. Our only requirement is that the variational posterior is differentiable. In order to ensure convergence in stochastic settings, SVI rely on decaying step-sizes to slow its learning. Inspired by SVI and Adam, we propose the novel use of decaying step-sizes on both gradient and ascent direction in our VMM to significantly improve its learning. We show that our proposed methods is compatible with ResNet features when applied to large class number datasets such as MIT67 and SUN397. Finally, we compare our proposed learner with several recent works such as deep clustering algorithms and showed we were able to produce on par or outperform the state-of-the-art methods in terms of clustering measures.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员