Knowledge tracing (KT) plays a crucial role in computer-aided education and intelligent tutoring systems, aiming to assess students' knowledge proficiency by predicting their future performance on new questions based on their past response records. While existing deep learning knowledge tracing (DLKT) methods have significantly improved prediction accuracy and achieved state-of-the-art results, they often suffer from a lack of interpretability. To address this limitation, current approaches have explored incorporating psychological influences to achieve more explainable predictions, but they tend to overlook the potential influences of historical responses. In fact, understanding how models make predictions based on response influences can enhance the transparency and trustworthiness of the knowledge tracing process, presenting an opportunity for a new paradigm of interpretable KT. However, measuring unobservable response influences is challenging. In this paper, we resort to counterfactual reasoning that intervenes in each response to answer \textit{what if a student had answered a question incorrectly that he/she actually answered correctly, and vice versa}. Based on this, we propose RCKT, a novel response influence-based counterfactual knowledge tracing framework. RCKT generates response influences by comparing prediction outcomes from factual sequences and constructed counterfactual sequences after interventions. Additionally, we introduce maximization and inference techniques to leverage accumulated influences from different past responses, further improving the model's performance and credibility. Extensive experimental results demonstrate that our RCKT method outperforms state-of-the-art knowledge tracing methods on four datasets against six baselines, and provides credible interpretations of response influences.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员