Self-supervised Learning (SSL) provides a strategy for constructing useful representations of images without relying on hand-assigned labels. Many such methods aim to map distinct views of the same scene or object to nearby points in the representation space, while employing some constraint to prevent representational collapse. Here we recast the problem in terms of efficient coding by adopting manifold capacity, a measure that quantifies the quality of a representation based on the number of linearly separable object manifolds it can support, as the efficiency metric to optimize. Specifically, we adapt the manifold capacity for use as an objective function in a contrastive learning framework, yielding a Maximum Manifold Capacity Representation (MMCR). We apply this method to unlabeled images, each augmented by a set of basic transformations, and find that it learns meaningful features using the standard linear evaluation protocol. Specifically, we find that MMCRs support performance on object recognition comparable to or surpassing that of recently developed SSL frameworks, while providing more robustness to adversarial attacks. Empirical analyses reveal differences between MMCRs and representations learned by other SSL frameworks, and suggest a mechanism by which manifold compression gives rise to class separability.


翻译:自我监督的学习(SSL) 提供了一种战略,用于构建有用的图像表达方式,而不必依赖手贴标签。许多这类方法旨在将同一场景或对象的不同观点映射到演示空间的近点,同时使用一些限制来防止演示性崩溃。在这里,我们通过采用多种能力,从高效编码的角度重新审视了问题,这一措施根据线性可分离的物体的数量量量量度了显示质量,作为优化的效率衡量标准。具体地说,我们调整了多种能力,作为对比性学习框架中的一项客观功能使用,产生最大负能力代表(MMCR),我们将这种方法应用于未贴标签的图像,每个图像都通过一套基本转换得到增强,并发现它利用标准的线性评估协议学习有意义的特征。具体地说,我们发现MMCR支持与最近开发的SSL框架相近似或超过的物体识别性,同时为对抗性攻击提供更强性。Epicalal分析揭示了MCR和由其他SSL框架所学的演示力之间的差异,并提出了一种机制,使压升至等级。</s>

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年10月20日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员