Accurate and rapid state-of-health (SOH) monitoring plays an important role in indicating energy information for lithium-ion battery-powered portable mobile devices. To confront their variable working conditions, transfer learning (TL) emerges as a promising technique for leveraging knowledge from data-rich source working conditions, significantly reducing the training data required for SOH monitoring from target working conditions. However, traditional TL-based SOH monitoring is infeasible when applied in portable mobile devices since substantial computational resources are consumed during the TL stage and unexpectedly reduce the working endurance. To address these challenges, this paper proposes a lightweight TL-based SOH monitoring approach with constructive incremental transfer learning (CITL). First, taking advantage of the unlabeled data in the target domain, a semi-supervised TL mechanism is proposed to minimize the monitoring residual in a constructive way, through iteratively adding network nodes in the CITL. Second, the cross-domain learning ability of node parameters for CITL is comprehensively guaranteed through structural risk minimization, transfer mismatching minimization, and manifold consistency maximization. Moreover, the convergence analysis of the CITL is given, theoretically guaranteeing the efficacy of TL performance and network compactness. Finally, the proposed approach is verified through extensive experiments with a realistic autonomous air vehicles (AAV) battery dataset collected from dozens of flight missions. Specifically, the CITL outperforms SS-TCA, MMD-LSTM-DA, DDAN, BO-CNN-TL, and AS$^3$LSTM, in SOH estimation by 83.73%, 61.15%, 28.24%, 87.70%, and 57.34%, respectively, as evaluated using the index root mean square error.


翻译:准确且快速的健康状态监测对于指示锂离子电池驱动的便携移动设备的能量信息具有重要作用。为应对其多变的工作条件,迁移学习成为一种有前景的技术,可利用数据丰富的源工作条件下的知识,显著减少目标工作条件下健康状态监测所需的训练数据。然而,传统的基于迁移学习的健康状态监测在应用于便携移动设备时不可行,因为在迁移学习阶段消耗大量计算资源,意外降低了设备的工作续航能力。为应对这些挑战,本文提出了一种基于轻量级迁移学习的健康状态监测方法,采用构造性增量迁移学习。首先,利用目标域中的未标记数据,提出一种半监督迁移学习机制,通过迭代增加CITL中的网络节点,以构造性方式最小化监测残差。其次,通过结构风险最小化、迁移失配最小化和流形一致性最大化,全面保障CITL节点参数的跨域学习能力。此外,给出了CITL的收敛性分析,从理论上保证了迁移学习性能和网络紧凑性的有效性。最后,通过基于数十次飞行任务收集的真实自主飞行器电池数据集进行大量实验验证了所提方法。具体而言,在健康状态估计方面,CITL在均方根误差指标评估下分别优于SS-TCA、MMD-LSTM-DA、DDAN、BO-CNN-TL和AS$^3$LSTM达83.73%、61.15%、28.24%、87.70%和57.34%。

0
下载
关闭预览

相关内容

健康是指一个人在身体、精神和社会等方面都处于良好的状态。 健康包括两个方面的内容:

一是主要脏器无疾病,身体形态发育良好,体形均匀,人体各系统具有良好的生理功能,有较强的身体活动能力和劳动能力,这是对健康最基本的要求;

二是对疾病的抵抗能力较强,能够适应环境变化,各种生理刺激以及致病因素对身体的作用。传统的健康观是“无病即健康”,现代人的健康观是整体健康,世界卫生组织提出“健康不仅是躯体没有疾病,还要具备心理健康、社会适应良好和有道德”。因此,现代人的健康内容包括:躯体健康、心理健康、心灵健康、社会健康、智力健康、道德健康、环境健康等。健康是人的基本权利。健康是人生的第一财富。
【ICLR2025】AdaWM:基于自适应世界模型的自动驾驶规划
专知会员服务
16+阅读 · 2025年1月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
VIP会员
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员