A formalization of a subject-event ontology is proposed for modeling complex dynamic systems without reliance on global time. Key principles: (1) event as an act of fixation - a subject discerns and fixes changes according to models (conceptual templates) available to them; (2) causal order via happens-before - the order of events is defined by explicit dependencies, not timestamps; (3) making the ontology executable via a declarative dataflow mechanism, ensuring determinism; (4) models as epistemic filters - a subject can only fix what falls under its known concepts and properties; (5) presumption of truth - the declarative content of an event is available for computation from the moment of fixation, without external verification. The formalization includes nine axioms (A1-A9), ensuring the correctness of executable ontologies: monotonicity of history (I1), acyclicity of causality (I2), traceability (I3). Special attention is given to the model-based approach (A9): event validation via schemas, actor authorization, automatic construction of causal chains (W3) without global time. Practical applicability is demonstrated on the boldsea system - a workflow engine for executable ontologies, where the theoretical constructs are implemented in BSL (Boldsea Semantic Language). The formalization is applicable to distributed systems, microservice architectures, DLT platforms, and multiperspectivity scenarios (conflicting facts from different subjects).


翻译:本文提出一种无需依赖全局时间的形式化主体-事件本体论,用于复杂动态系统建模。核心原则包括:(1) 事件作为固化行为——主体根据其可用模型(概念模板)识别并固化变化;(2) 基于happens-before的因果序——事件顺序由显式依赖关系定义而非时间戳;(3) 通过声明式数据流机制实现本体可执行化,确保确定性;(4) 模型作为认知过滤器——主体仅能固化其已知概念与属性范畴内的内容;(5) 真值预设——事件的声明式内容自固化时刻起即可用于计算,无需外部验证。该形式化体系包含九条公理(A1-A9),确保可执行本体论的正确性:历史单调性(I1)、因果无环性(I2)、可追溯性(I3)。特别关注基于模型的方法(A9):通过模式进行事件验证、执行者授权、无需全局时间的因果链自动构建(W3)。在boldsea系统——一个面向可执行本体论的工作流引擎中验证了实际适用性,理论架构通过BSL(Boldsea语义语言)实现。该形式化体系适用于分布式系统、微服务架构、DLT平台及多视角场景(不同主体间的冲突事实)。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年7月18日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员