We develop a reproducing kernel Hilbert space (RKHS) framework for nonparametric mean-variance optimization and inference on shape constraints of the optimal rule. We derive statistical properties of the sample estimator and provide rigorous theoretical guarantees, such as asymptotic consistency, a functional central limit theorem, and a finite-sample deviation bound that matches the Monte Carlo rate up to regularization. Building on these findings, we introduce a joint Wald-type statistic to test for shape constraints over finite grids. The approach comes with an efficient computational procedure based on a pivoted Cholesky factorization, facilitating scalability to large datasets. Empirical tests suggest favorably of the proposed methodology.


翻译:我们开发了一种再生核希尔伯特空间(RKHS)框架,用于非参数均值-方差优化及对最优规则形状约束的推断。我们推导了样本估计量的统计性质,并提供了严格的理论保证,例如渐近一致性、泛函中心极限定理,以及与蒙特卡洛率匹配(直至正则化项)的有限样本偏差界。基于这些发现,我们引入了一种联合Wald型统计量,用于在有限网格上检验形状约束。该方法配备了一种基于主元Cholesky分解的高效计算流程,有助于扩展到大规模数据集。实证检验表明所提方法具有良好性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年12月9日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员