Modern cyber-physical systems (CPS) such as Cooperative Intelligent Transport Systems (C-ITS) are increasingly defined by the software which operates these systems. In practice, microservice architectures can be employed, which may consist of containerized microservices running in a cluster comprised of robots and supporting infrastructure. These microservices need to be orchestrated dynamically according to ever changing requirements posed at the system. Additionally, these systems are embedded in DevOps processes aiming at continually updating and upgrading both the capabilities of CPS components and of the system as a whole. In this paper, we present RobotKube, an approach to orchestrating containerized microservices for large-scale cooperative multi-robot CPS based on Kubernetes. We describe how to automate the orchestration of software across a CPS, and include the possibility to monitor and selectively store relevant accruing data. In this context, we present two main components of such a system: an event detector capable of, e.g., requesting the deployment of additional applications, and an application manager capable of automatically configuring the required changes in the Kubernetes cluster. By combining the widely adopted Kubernetes platform with the Robot Operating System (ROS), we enable the use of standard tools and practices for developing, deploying, scaling, and monitoring microservices in C-ITS. We demonstrate and evaluate RobotKube in an exemplary and reproducible use case that we make publicly available at https://github.com/ika-rwth-aachen/robotkube .


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员