Software Quality Assurance (SQA) is critical for delivering reliable, secure, and efficient software products. The Software Quality Assurance Process aims to provide assurance that work products and processes comply with predefined provisions and plans. Recent advancements in Large Language Models (LLMs) present new opportunities to enhance existing SQA processes by automating tasks like requirement analysis, code review, test generation, and compliance checks. Simultaneously, established standards such as ISO/IEC 12207, ISO/IEC 25010, ISO/IEC 5055, ISO 9001/ISO/IEC 90003, CMMI, and TMM provide structured frameworks for ensuring robust quality practices. This paper surveys the intersection of LLM-based SQA methods and these recognized standards, highlighting how AI-driven solutions can augment traditional approaches while maintaining compliance and process maturity. We first review the foundational software quality standards and the technical fundamentals of LLMs in software engineering. Next, we explore various LLM-based SQA applications, including requirement validation, defect detection, test generation, and documentation maintenance. We then map these applications to key software quality frameworks, illustrating how LLMs can address specific requirements and metrics within each standard. Empirical case studies and open-source initiatives demonstrate the practical viability of these methods. At the same time, discussions on challenges (e.g., data privacy, model bias, explainability) underscore the need for deliberate governance and auditing. Finally, we propose future directions encompassing adaptive learning, privacy-focused deployments, multimodal analysis, and evolving standards for AI-driven software quality.


翻译:软件质量保障(SQA)对于交付可靠、安全、高效的软件产品至关重要。软件质量保障过程旨在确保工作产品和过程符合预定的规定与计划。大语言模型(LLMs)的最新进展为增强现有SQA流程提供了新的机遇,能够自动化需求分析、代码审查、测试生成和合规性检查等任务。与此同时,已确立的标准如ISO/IEC 12207、ISO/IEC 25010、ISO/IEC 5055、ISO 9001/ISO/IEC 90003、CMMI和TMM,为确保稳健的质量实践提供了结构化框架。本文综述了基于LLM的SQA方法与这些公认标准的交叉领域,重点阐述了AI驱动的解决方案如何在保持合规性和过程成熟度的同时增强传统方法。我们首先回顾了基础的软件质量标准以及LLM在软件工程中的技术基础。接着,我们探讨了各种基于LLM的SQA应用,包括需求验证、缺陷检测、测试生成和文档维护。然后,我们将这些应用映射到关键的软件质量框架中,说明LLM如何满足每个标准内的特定要求和度量指标。实证案例研究和开源项目证明了这些方法的实际可行性。同时,关于挑战(例如数据隐私、模型偏差、可解释性)的讨论强调了审慎治理和审计的必要性。最后,我们提出了未来的研究方向,涵盖自适应学习、注重隐私的部署、多模态分析以及针对AI驱动软件质量的演进标准。

0
下载
关闭预览

相关内容

软件(中国大陆及香港用语,台湾作软体,英文:Software)是一系列按照特定顺序组织的计算机数据和指令的集合。一般来讲软件被划分为编程语言、系统软件、应用软件和介于这两者之间的中间件。软件就是程序加文档的集合体。
【2022新书】Python数据分析第三版,579页pdf
专知
19+阅读 · 2022年8月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员