A maximum distance separable (MDS) array code is composed of $m\times (k+r)$ arrays such that any $k$ out of $k+r$ columns suffice to retrieve all the information symbols. Expanded-Blaum-Roth (EBR) codes and Expanded-Independent-Parity (EIP) codes are two classes of MDS array codes that can repair any one symbol in a column by locally accessing some other symbols within the column, where the number of symbols $m$ in a column is a prime number. By generalizing the constructions of EBR and EIP codes, we propose new MDS array codes, such that any one symbol can be locally recovered and the number of symbols in a column can be not only a prime number but also a power of an odd prime number. Also, we present an efficient encoding/decoding method for the proposed generalized EBR (GEBR) and generalized EIP (GEIP) codes based on the LU factorization of a Vandermonde matrix. We show that the proposed decoding method has less computational complexity than existing methods. Furthermore, we show that the proposed GEBR codes have both a larger minimum symbol distance and a larger recovery ability of erased lines for some parameters when compared to EBR codes. We show that EBR codes can recover any $r$ erased lines of a slope for any parameter $r$, which was an open problem in [2].


翻译:最大距离分解( MDS) 阵列代码由 $m\ time (k+r) 阵列组成, 如此一来, 美元+r 列中的任何美元都足以收回所有信息符号。 扩展- Blaum- Roth (EBR) 代码和扩展- 独立- Paity (EIP) 代码是 扩展- Blaum- Roth (EBR) 代码的两大类 MDS 阵列代码, 这些代码可以通过本地访问一列中某些其它符号来修复一列中的任何单个符号, 其中一列中的符号数数是质数。 我们通过概括 EBR 和 EIP 的构建, 我们提出了新的阵列代码, 其中的计算复杂性比现有方法要小一些。 此外, 我们为回收的 EBR 提供了一种最小值的编码。 我们为 EBR 提供了一种最小的代号, 当我们为 EBR 的代号 显示一个最小的代号时, 我们为 EBR 的恢复 。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
127+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
127+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员