In average reward Markov decision processes, state-of-the-art algorithms for regret minimization follow a well-established framework: They are model-based, optimistic and episodic. First, they maintain a confidence region from which optimistic policies are computed using a well-known subroutine called Extended Value Iteration (EVI). Second, these policies are used over time windows called episodes, each ended by the Doubling Trick (DT) rule or a variant thereof. In this work, without modifying EVI, we show that there is a significant advantage in replacing (DT) by another simple rule, that we call the Vanishing Multiplicative (VM) rule. When managing episodes with (VM), the algorithm's regret is, both in theory and in practice, as good if not better than with (DT), while the one-shot behavior is greatly improved. More specifically, the management of bad episodes (when sub-optimal policies are being used) is much better under (VM) than (DT) by making the regret of exploration logarithmic rather than linear. These results are made possible by a new in-depth understanding of the contrasting behaviors of confidence regions during good and bad episodes.


翻译:在平均奖励马尔可夫决策过程中,用于遗憾最小化的最先进算法遵循一个成熟的框架:它们是基于模型的、乐观的且分段的。首先,算法维护一个置信区域,并通过一个称为扩展值迭代(EVI)的已知子程序计算乐观策略。其次,这些策略在称为段的时间窗口内使用,每个段由倍增技巧(DT)规则或其变体结束。在本工作中,我们未修改EVI,而是展示了用另一个简单规则——我们称之为消失乘性(VM)规则——替代(DT)具有显著优势。当使用(VM)管理段时,算法的遗憾在理论和实践中均不逊于甚至优于(DT),同时单次行为得到极大改善。具体而言,在(VM)规则下,对不良段(当使用次优策略时)的管理远优于(DT),使得探索的遗憾呈对数而非线性增长。这些结果得益于对置信区域在良好段和不良段中对比行为的新深入理解。

0
下载
关闭预览

相关内容

马尔可夫决策过程(MDP)提供了一个数学框架,用于在结果部分随机且部分受决策者控制的情况下对决策建模。 MDP可用于研究通过动态编程和强化学习解决的各种优化问题。 MDP至少早在1950年代就已为人所知(参见)。 马尔可夫决策过程的研究核心是罗纳德·霍华德(Ronald A. Howard)于1960年出版的《动态编程和马尔可夫过程》一书。 它们被广泛用于各种学科,包括机器人技术,自动控制,经济学和制造。 更精确地,马尔可夫决策过程是离散的时间随机控制过程。 在每个时间步骤中,流程都处于某种状态,决策者可以选择该状态下可用的任何操作。 该过程在下一时间步响应,随机进入新状态,并给予决策者相应的奖励。 流程进入新状态的可能性受所选动作的影响。 具体而言,它由状态转换函数给出。 因此,下一个状态取决于当前状态和决策者的动作。 但是给定和,它有条件地独立于所有先前的状态和动作; 换句话说,MDP进程的状态转换满足Markov属性。 马尔可夫决策过程是马尔可夫链的扩展。 区别在于增加了动作(允许选择)和奖励(给予动机)。 相反,如果每个状态仅存在一个动作(例如“等待”)并且所有奖励都相同(例如“零”),则马尔可夫决策过程将简化为马尔可夫链。
【AAAI2023】图序注意力网络
专知会员服务
46+阅读 · 2022年11月24日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员