Solutions to the governing partial differential equations obtained from a discrete numerical scheme can have significant errors, especially near shocks when the discrete representation of the solution cannot fully capture the discontinuity in the solution. A recent approach to shock tracking [1, 2] has been to implicitly align the faces of mesh elements with the shock, yielding accurate solutions on coarse meshes. In engineering applications, the solution field is often used to evaluate a scalar functional of interest, such as lift or drag over an airfoil. While functionals are sensitive to errors in the flow solution, certain regions in the domain are more important for accurate evaluation of the functional than the rest. Using this fact, we formulate a goal-oriented implicit shock tracking approach that captures a segment of the shock that is important for evaluating the functional. Shock tracking is achieved using Lagrange-Newton-Krylov-Schur (LNKS) full space optimizer, with the objective of minimizing the adjoint-weighted residual error indicator. We also present a method to evaluate the sensitivity and the Hessian of the functional error. Using available block preconditioners for LNKS [3, 4] makes the full space approach scalable. The method is applied to test cases of two-dimensional advection and inviscid compressible flows to demonstrate functional-dependent shock tracking. Tracking the entire shock without using artificial dissipation results in the error converging at the orders of $\mathcal{O}(h^{p+1})$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员