Particle filters (PFs) is a class of Monte Carlo algorithms that propagate over time a set of $N\in\mathbb{N}$ particles which can be used to estimate, in an online fashion, the sequence of filtering distributions $(\hat{\eta}_t)_{t\geq 1}$ defined by a state-space model. Despite the popularity of PFs, the time evolution of their estimates does not appear to have been previously studied in the literature. Denoting by $(\hat{\eta}_t^N)_{t\geq 1}$ the PF estimate of $(\hat{\eta}_t)_{t\geq 1}$ and letting $\kappa\in (0,1)$, we first show that for any number of particles $N$ it holds that, with probability one, we have $\|\hat{\eta}_t^N- \hat{\eta}_t\|\geq \kappa$ for infinitely many $t\geq 1$, with $\|\cdot\|$ a measure of distance between probability distributions. Considering a simple filtering problem we then provide reassuring results concerning the ability of PFs to estimate jointly a finite set $\{\hat{\eta}_t\}_{t=1}^T$ of filtering distributions by studying $\P(\sup_{t\in\{1,\dots,T\}}\|\hat{\eta}_t^{N}-\hat{\eta}_t\|\geq \kappa)$. Finally, on the same toy filtering problem, we prove that sequential quasi-Monte Carlo, a randomized quasi-Monte Carlo version of PF algorithms, offers greater safety guarantees than PFs in the sense that, for this algorithm, it holds that $\lim_{N\rightarrow\infty}\sup_{t\geq 1}\|\hat{\eta}_t^N-\hat{\eta}_t\|=0$ with probability one.


翻译:粒子滤波器(PFs)是一类蒙特卡洛算法,其在时间上传播一组$N\in\mathbb{N}$个粒子,可用于在线估计由状态空间模型定义的滤波分布序列$(\hat{\eta}_t)_{t\geq 1}$。尽管粒子滤波器应用广泛,但其估计值的时间演化此前在文献中似乎尚未被研究。记$(\hat{\eta}_t^N)_{t\geq 1}$为$(\hat{\eta}_t)_{t\geq 1}$的粒子滤波器估计,并令$\kappa\in (0,1)$。我们首先证明,对于任意粒子数$N$,以概率一成立:存在无限多个$t\geq 1$使得$\|\hat{\eta}_t^N- \hat{\eta}_t\|\geq \kappa$,其中$\|\cdot\|$为概率分布间的一种距离度量。针对一个简单的滤波问题,我们随后通过研究$\P(\sup_{t\in\{1,\dots,T\}}\|\hat{\eta}_t^{N}-\hat{\eta}_t\|\geq \kappa)$,给出了关于粒子滤波器联合估计有限滤波分布集$\{\hat{\eta}_t\}_{t=1}^T$能力的可靠结果。最后,在同一示例滤波问题上,我们证明序列拟蒙特卡洛(一种随机化拟蒙特卡洛版本的粒子滤波器算法)比标准粒子滤波器具有更高的安全性保证,即对于该算法,以概率一成立$\lim_{N\rightarrow\infty}\sup_{t\geq 1}\|\hat{\eta}_t^N-\hat{\eta}_t\|=0$。

0
下载
关闭预览

相关内容

RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员