We consider the problem of numerically identifying roots of a target function - under the constraint that we can only measure the derivatives of the function at a given point, not the function itself. We describe and characterize two methods for doing this: (1) a local-inversion "inching process", where we use local measurements to repeatedly identify approximately how far we need to move to drop the target function by the initial value over N, an input parameter, and (2) an approximate Newton's method, where we estimate the current function value at a given iteration via estimation of the integral of the function's derivative, using N samples. When applicable, both methods converge algebraically with N, with the power of convergence increasing with the number of derivatives applied in the analysis.


翻译:我们考虑从数字上确定目标函数的根基问题,因为我们只能测量该函数在某一点的衍生物,而不是函数本身。我们描述和定性两种方法来做到这一点:(1) 本地反转“加速过程”,我们用当地测量方法反复确定我们距离目标函数的初始值比N(输入参数)要下降大约多远,以及(2) 牛顿的近似方法,我们用N样本估算函数衍生物的有机成分,从而估计特定迭代时的当前函数值。在适用的情况下,这两种方法都与N相交,与分析中应用的衍生物的趋同力不断增加。</s>

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员