Despite ongoing theoretical research on cross-validation (CV), many theoretical questions remain widely open. This motivates our investigation into how properties of algorithm-distribution pairs can affect the choice for the number of folds in $k$-fold CV. Our results consist of a novel decomposition of the mean-squared error of cross-validation for risk estimation, which explicitly captures the correlations of error estimates across overlapping folds and includes a novel algorithmic stability notion, squared loss stability, that is considerably weaker than the typically required hypothesis stability in other comparable works. Furthermore, we prove: 1. For any learning algorithm that minimizes empirical risk, the mean-squared error of the $k$-fold cross-validation estimator $\widehat{L}_{\mathrm{CV}}^{(k)}$ of the population risk $L_{D}$ satisfies the following minimax lower bound: \[ \min_{k \mid n} \max_{D} \mathbb{E}\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{D}\big)^{2}\right]=Ω\big(\sqrt{k^*}/n\big), \] where $n$ is the sample size, $k$ the number of folds, and $k^*$ denotes the number of folds attaining the minimax optimum. This shows that even under idealized conditions, for large values of $k$, CV cannot attain the optimum of order $1/n$ achievable by a validation set of size $n$, reflecting an inherent penalty caused by dependence between folds. 2. Complementing this, we exhibit learning rules for which \[ \max_{D}\mathbb{E}\!\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{D}\big)^{2}\right]=Ω(k/n), \] matching (up to constants) the accuracy of a hold-out estimator of a single fold of size $n/k$. Together these results delineate the fundamental trade-off in resampling-based risk estimation: CV cannot fully exploit all $n$ samples for unbiased risk evaluation, and its minimax performance is pinned between the $k/n$ and $\sqrt{k}/n$ regimes.


翻译:尽管关于交叉验证(CV)的理论研究持续进行,许多理论问题仍悬而未决。这促使我们探究算法-分布对的性质如何影响$k$折交叉验证中折数$k$的选择。我们的成果包括:提出了一种用于风险估计的交叉验证均方误差的新颖分解方法,该方法显式捕捉了重叠折间误差估计的相关性,并引入了一种新的算法稳定性概念——平方损失稳定性,该概念显著弱于其他同类工作中通常要求的假设稳定性。此外,我们证明了:1. 对于任何最小化经验风险的算法,总体风险$L_{D}$的$k$折交叉验证估计量$\widehat{L}_{\mathrm{CV}}^{(k)}$的均方误差满足以下极小极大下界:\[ \min_{k \mid n} \max_{D} \mathbb{E}\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{D}\big)^{2}\right]=Ω\big(\sqrt{k^*}/n\big), \] 其中$n$为样本量,$k$为折数,$k^*$表示达到极小极大最优的折数。这表明即使在理想条件下,对于较大的$k$值,交叉验证也无法达到大小为$n$的验证集所能实现的$1/n$阶最优,反映了折间依赖性导致的固有惩罚。2. 作为补充,我们构造了满足下式的学习规则:\[ \max_{D}\mathbb{E}\!\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{D}\big)^{2}\right]=Ω(k/n), \] 该结果在常数因子内匹配了大小为$n/k$的单一折的留出估计量的精度。这些结果共同界定了基于重采样的风险估计中的根本权衡:交叉验证无法充分利用全部$n$个样本进行无偏风险评估,其极小极大性能被限制在$k/n$与$\sqrt{k}/n$两种机制之间。

0
下载
关闭预览

相关内容

交叉验证,有时也称为旋转估计或样本外测试,是用于评估统计结果如何的各种类似模型验证技术中的任何一种分析将概括为一个独立的数据集。它主要用于设置,其目的是预测,和一个想要估计如何准确地一个预测模型在实践中执行。在预测问题中,通常会给模型一个已知数据的数据集,在该数据集上进行训练(训练数据集)以及未知数据(或首次看到的数据)的数据集(根据该数据集测试模型)(称为验证数据集或测试集)。交叉验证的目标是测试模型预测未用于估计数据的新数据的能力,以发现诸如过度拟合或选择偏倚之类的问题,并提供有关如何进行建模的见解。该模型将推广到一个独立的数据集(例如,未知数据集,例如来自实际问题的数据集)。 一轮交叉验证涉及分割一个样品的数据到互补的子集,在一个子集执行所述分析(称为训练集),以及验证在另一子集中的分析(称为验证集合或测试集)。为了减少可变性,在大多数方法中,使用不同的分区执行多轮交叉验证,并将验证结果组合(例如取平均值)在各轮中,以估计模型的预测性能。 总而言之,交叉验证结合了预测中适用性的度量(平均),以得出模型预测性能的更准确估计。
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员