Given a closed simple polygon $P$, we say two points $p,q$ see each other if the segment $pq$ is fully contained in $P$. The art gallery problem seeks a minimum size set $G\subset P$ of guards that sees $P$ completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods and is attributed to Sharir. As the art gallery problem is ER-complete, it seems unlikely to avoid algebraic methods, without additional assumptions. In this paper, we introduce the notion of vision stability. In order to describe vision stability consider an enhanced guard that can see "around the corner" by an angle of $\delta$ or a diminished guard whose vision is by an angle of $\delta$ "blocked" by reflex vertices. A polygon $P$ has vision stability $\delta$ if the optimal number of enhanced guards to guard $P$ is the same as the optimal number of diminished guards to guard $P$. We will argue that most relevant polygons are vision stable. We describe a one-shot vision stable algorithm that computes an optimal guard set for visionstable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision stable polygon. We implemented an iterative visionstable algorithm and show its practical performance is slower, but comparable with other state of the art algorithms. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord $c$ of a polygon, we denote by $n(c)$ the number of vertices visible from $c$. The chord-width of a polygon is the maximum $n(c)$ over all possible chords $c$. The set of vision stable polygons admits an FPT algorithm when parametrized by the chord-width. Furthermore, the one-shot algorithm runs in FPT time, when parameterized by the number of reflex vertices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员