In recent years, multimodal large language models (MLLMs) such as GPT-4V have demonstrated remarkable advancements, excelling in a variety of vision-language tasks. Despite their prowess, the closed-source nature and computational demands of such models limit their accessibility and applicability. This study introduces TinyGPT-V, a novel open-source MLLM, designed for efficient training and inference across various vision-language tasks, including image captioning (IC) and visual question answering (VQA). Leveraging a compact yet powerful architecture, TinyGPT-V integrates the Phi-2 language model with pre-trained vision encoders, utilizing a unique mapping module for visual and linguistic information fusion. With a training regimen optimized for small backbones and employing a diverse dataset amalgam, TinyGPT-V requires significantly lower computational resources 24GB for training and as little as 8GB for inference without compromising on performance. Our experiments demonstrate that TinyGPT-V, with its language model 2.8 billion parameters, achieves comparable results in VQA and image inference tasks to its larger counterparts while being uniquely suited for deployment on resource-constrained devices through innovative quantization techniques. This work not only paves the way for more accessible and efficient MLLMs but also underscores the potential of smaller, optimized models in bridging the gap between high performance and computational efficiency in real-world applications. Additionally, this paper introduces a new approach to multimodal large language models using smaller backbones. Our code and training weights are available in the supplementary material.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2024年2月23日
Arxiv
17+阅读 · 2023年9月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
24+阅读 · 2024年2月23日
Arxiv
17+阅读 · 2023年9月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员