Multimodal Emotion Recognition in Conversations (MERC) aims to classify utterance emotions using textual, auditory, and visual modal features. Most existing MERC methods assume each utterance has complete modalities, overlooking the common issue of incomplete modalities in real-world scenarios. Recently, graph neural networks (GNNs) have achieved notable results in Incomplete Multimodal Emotion Recognition in Conversations (IMERC). However, traditional GNNs focus on binary relationships between nodes, limiting their ability to capture more complex, higher-order information. Moreover, repeated message passing can cause over-smoothing, reducing their capacity to preserve essential high-frequency details. To address these issues, we propose a Spectral Domain Reconstruction Graph Neural Network (SDR-GNN) for incomplete multimodal learning in conversational emotion recognition. SDR-GNN constructs an utterance semantic interaction graph using a sliding window based on both speaker and context relationships to model emotional dependencies. To capture higher-order and high-frequency information, SDR-GNN utilizes weighted relationship aggregation, ensuring consistent semantic feature extraction across utterances. Additionally, it performs multi-frequency aggregation in the spectral domain, enabling efficient recovery of incomplete modalities by extracting both high- and low-frequency information. Finally, multi-head attention is applied to fuse and optimize features for emotion recognition. Extensive experiments on various real-world datasets demonstrate that our approach is effective in incomplete multimodal learning and outperforms current state-of-the-art methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员