We present the massively parallel performance of a $h$-adaptive solver for atmosphere dynamics that allows for non-conforming mesh refinement. The numerical method is based on a Discontinuous Galerkin (DG) spatial discretization, highly scalable thanks to its data locality properties, and on a second order Implicit-Explicit Runge-Kutta (IMEX-RK) method for time discretization, particularly well suited for low Mach number flows. Simulations with non-conforming meshes for flows over orography can increase the accuracy of the local flow description without affecting the larger scales, which can be solved on coarser meshes. We show that the local refining procedure has no significant impact on the parallel performance and, therefore, both efficiency and scalability can be achieved in this framework.


翻译:本文展示了一种支持非一致网格细化的大气动力学$h$自适应求解器的大规模并行性能。该数值方法基于间断伽辽金空间离散格式(因其数据局部性而具有高度可扩展性)以及二阶隐式-显式龙格-库塔时间离散格式(特别适用于低马赫数流动)。针对地形上空流动采用非一致网格的模拟,可在不影响大尺度流动(可在较粗网格上求解)的前提下,提升局部流动描述的精度。研究表明,局部细化过程对并行性能无显著影响,因此在该框架下可同时实现高效性与可扩展性。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员