We investigate a scalar partial differential equation model for the formation of biological transportation networks. Starting from a discrete graph-based formulation on equilateral triangulations, we rigorously derive the corresponding continuum energy functional as the $\Gamma$-limit under network refinement and establish the existence of global minimizers. The model possesses a gradient-flow structure whose steady states coincide with solutions of the $p$-Laplacian equation. Building on this connection, we implement finite element discretizations and propose a novel dynamical relaxation scheme that achieves optimal convergence rates in manufactured tests and exhibits mesh-independent performance, with the number of time steps, nonlinear iterations, and linear solves remaining stable under uniform mesh refinement. Numerical experiments confirm both the ability of the scalar model to reproduce biologically relevant network patterns and its effectiveness as a computationally efficient relaxation strategy for solving $p$-Laplacian equations for large exponents $p$.


翻译:我们研究了一种用于生物输运网络形成的标量偏微分方程模型。从等边三角剖分上的离散图模型出发,我们严格推导了在网络细化下作为$\Gamma$-极限的连续能量泛函,并证明了全局极小解的存在性。该模型具有梯度流结构,其稳态解与$p$-Laplacian方程的解一致。基于这一联系,我们实现了有限元离散化,并提出了一种新颖的动态松弛格式。该格式在构造测试中达到了最优收敛速率,并展现出网格无关的性能——在均匀网格细化下,时间步数、非线性迭代次数和线性求解次数保持稳定。数值实验证实了该标量模型既能重现生物学相关的网络模式,又能作为求解大指数$p$的$p$-Laplacian方程的高效计算松弛策略。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员