Neuro-symbolic reasoning systems face fundamental challenges in maintaining semantic coherence while satisfying physical and logical constraints. Building upon our previous work on Ontology Neural Networks, we present an enhanced framework that integrates topological conditioning with gradient stabilization mechanisms. The approach employs Forman-Ricci curvature to capture graph topology, Deep Delta Learning for stable rank-one perturbations during constraint projection, and Covariance Matrix Adaptation Evolution Strategy for parameter optimization. Experimental evaluation across multiple problem sizes demonstrates that the method achieves mean energy reduction to 1.15 compared to baseline values of 11.68, with 95 percent success rate in constraint satisfaction tasks. The framework exhibits seed-independent convergence and graceful scaling behavior up to twenty-node problems, suggesting that topological structure can inform gradient-based optimization without sacrificing interpretability or computational efficiency.


翻译:神经符号推理系统在满足物理和逻辑约束的同时保持语义一致性面临根本性挑战。基于我们先前在本体神经网络上的研究工作,本文提出一种增强框架,将拓扑条件与梯度稳定机制相结合。该方法采用Forman-Ricci曲率捕捉图拓扑结构,利用Deep Delta Learning在约束投影过程中实现稳定的秩一扰动,并通过协方差矩阵自适应进化策略进行参数优化。跨多个问题规模的实验评估表明,相较于基线值11.68,该方法将平均能量降低至1.15,在约束满足任务中达到95%的成功率。该框架展现出与随机种子无关的收敛特性,并在多达二十节点的问题规模上保持优雅的扩展行为,表明拓扑结构能够在保持可解释性与计算效率的前提下,为基于梯度的优化提供有效信息。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年5月19日
专知会员服务
20+阅读 · 2020年12月9日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员