We develop a quantum version of the em algorithm for training quantum Boltzmann machines. The em algorithm is an information-geometric extension of the well-known expectation-maximization (EM) algorithm, offering a structured alternative to gradient-based methods with potential advantages in stability and convergence. We implement the algorithm on a semi-quantum restricted Boltzmann machine, where quantum effects are confined to the hidden layer. This structure enables analytical update rules while preserving quantum expressivity. Numerical experiments on benchmark datasets show that the proposed method achieves stable learning and outperforms gradient-based training in several cases. These results demonstrate the potential of information-geometric optimization for quantum machine learning, particularly in settings where standard methods struggle due to non-commutativity or vanishing gradients.


翻译:我们提出了一种用于训练量子玻尔兹曼机的量子化EM算法。该EM算法是经典期望最大化(EM)算法在信息几何框架下的扩展,为基于梯度的训练方法提供了一种结构化替代方案,在稳定性和收敛性方面具有潜在优势。我们在一个半量子受限玻尔兹曼机上实现了该算法,其中量子效应被限制在隐藏层。这种结构在保持量子表达力的同时,允许解析更新规则。在基准数据集上的数值实验表明,所提方法实现了稳定学习,并在多种情况下优于基于梯度的训练。这些结果证明了信息几何优化在量子机器学习中的潜力,特别是在非对易性或梯度消失导致标准方法失效的场景中。

0
下载
关闭预览

相关内容

玻尔兹曼机(也称为带有隐藏单元的随机Hopfield网络)是一种随机递归神经网络。这是一个马尔可夫随机场,它是从统计物理学翻译过来的,用于认知科学。Boltzmann机器基于具有外部场的随机旋转玻璃模型,即Sherrington-Kirkpatrick模型,它是随机的Ising模型,并应用于机器学习。Boltzmann机器可以看作是Hopfield网络的随机,生成对应物。它们是最早的能够学习内部表示的神经网络之一,并且能够表示和(给定足够的时间)解决组合问题。它是一类典型的随机神经网络属于反馈神经网络类型 。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月17日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员