We study two-sample variable selection: identifying variables that discriminate between the distributions of two sets of data vectors. Such variables help scientists understand the mechanisms behind dataset discrepancies. Although domain-specific methods exist (e.g., in medical imaging, genetics, and computational social science), a general framework remains underdeveloped. We make two separate contributions. (i) We introduce a mathematical notion of the discriminating set of variables: the largest subset containing no variables whose marginals are identical across the two distributions and independent of the remaining variables. We prove this set is uniquely defined and establish further properties, making it a suitable ground truth for theory and evaluation. (ii) We propose two methods for two-sample variable selection that assign weights to variables and optimise them to maximise the power of a kernel two-sample test while enforcing sparsity to downweight redundant variables. To select the regularisation parameter - unknown in practice, as it controls the number of selected variables - we develop two data-driven procedures to balance recall and precision. Synthetic experiments show improved performance over baselines, and we illustrate the approach on two applications using datasets from water-pipe and traffic networks.


翻译:我们研究两样本变量选择问题:识别能够区分两组数据向量分布的变量。此类变量有助于科学家理解数据集差异背后的机制。尽管存在特定领域的方法(例如在医学影像、遗传学和计算社会科学中),但通用框架仍不完善。我们做出两项独立贡献。(i)我们引入变量判别集的数学概念:即包含无变量的最大子集,这些变量的边缘分布在两个分布中相同且与其余变量独立。我们证明该集合是唯一定义的,并建立了进一步的性质,使其成为理论与评估的合适基准。(ii)我们提出两种两样本变量选择方法,为变量分配权重并通过优化权重来最大化核两样本检验的功效,同时施加稀疏性以降低冗余变量的权重。为选择正则化参数(实践中未知,因其控制所选变量数量),我们开发了两种数据驱动程序以平衡召回率与精确率。合成实验显示其性能优于基线方法,并通过水管网络和交通网络数据集的两个应用案例展示了该方法的实用性。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年9月11日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员