In the context of medical Augmented Reality (AR) applications, object tracking is a key challenge and requires a significant amount of annotation masks. As segmentation foundation models like the Segment Anything Model (SAM) begin to emerge, zero-shot segmentation requires only minimal human participation obtaining high-quality object masks. We introduce a HoloLens-Object-Labeling (HOLa) Unity and Python application based on the SAM-Track algorithm that offers fully automatic single object annotation for HoloLens 2 while requiring minimal human participation. HOLa does not have to be adjusted to a specific image appearance and could thus alleviate AR research in any application field. We evaluate HOLa for different degrees of image complexity in open liver surgery and in medical phantom experiments. Using HOLa for image annotation can increase the labeling speed by more than 500 times while providing Dice scores between 0.875 and 0.982, which are comparable to human annotators. Our code is publicly available at: https://github.com/mschwimmbeck/HOLa


翻译:暂无翻译

0
下载
关闭预览

相关内容

Microsoft HoloLens 是由 Microsoft 公司于北京时间 2015 年 1 月 22 日凌晨发布的一款增强现实全息眼镜。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年8月19日
Image Segmentation Using Deep Learning: A Survey
Arxiv
47+阅读 · 2020年1月15日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2021年8月19日
Image Segmentation Using Deep Learning: A Survey
Arxiv
47+阅读 · 2020年1月15日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
10+阅读 · 2018年2月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员