Gradient-type iterative methods for solving Hermitian eigenvalue problems can be accelerated by using preconditioning and deflation techniques. A preconditioned steepest descent iteration with implicit deflation (PSD-id) is one of such methods. The convergence behavior of the PSD-id is recently investigated based on the pioneering work of Samokish on the preconditioned steepest descent method (PSD). The resulting non-asymptotic estimates indicate a superlinear convergence of the PSD-id under strong assumptions on the initial guess. The present paper utilizes an alternative convergence analysis of the PSD by Neymeyr under much weaker assumptions. We embed Neymeyr's approach into the analysis of the PSD-id using a restricted formulation of the PSD-id. More importantly, we extend the new convergence analysis of the PSD-id to a practically preferred block version of the PSD-id, or BPSD-id, and show the cluster robustness of the BPSD-id. Numerical examples are provided to validate the theoretical estimates.


翻译:使用先决条件和通货紧缩技术,可以加速加速采用梯度式迭代方法解决Hermitian egenvaly问题; 一种以隐含通缩(PSD-id)为先决条件的急剧下降迭代是这种方法之一; 最近根据Samokish关于最隐含性下降方法(PSD)的开拓性工作,调查了私营部门司的趋同行为; 由此得出的非被动估计表明私营部门司在初步猜测的强烈假设下具有超线性趋同; 本文利用Neymeyr对私营部门司的较弱假设进行的另一种趋同性分析。 我们用私营部门司的有限公式将Neymeyyr的方法纳入私营部门司的趋同分析。 更重要的是,我们将私营部门司对私营部门司的新趋同性分析扩大到私营部门司(PSD-id)的一个实际首选的区块版,或BPSD-id, 显示私营部门司的集群集稳健性。 提供了数字实例,以证实理论估计。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员