Bilevel optimization has found successful applications in various machine learning problems, including hyper-parameter optimization, data cleaning, and meta-learning. However, its huge computational cost presents a significant challenge for its utilization in large-scale problems. This challenge arises due to the nested structure of the bilevel formulation, where each hyper-gradient computation necessitates a costly inner optimization procedure. To address this issue, we propose a reformulation of bilevel optimization as a minimax problem, effectively decoupling the outer-inner dependency. Under mild conditions, we show these two problems are equivalent. Furthermore, we introduce a multi-stage gradient descent and ascent (GDA) algorithm to solve the resulting minimax problem with convergence guarantees. Extensive experimental results demonstrate that our method outperforms state-of-the-art bilevel methods while significantly reducing the computational cost.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年7月5日
Arxiv
0+阅读 · 2023年7月4日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员