A full-rank lattice in the Euclidean space is a discrete set formed by all integer linear combinations of a basis. Given a probability distribution on $\mathbb{R}^n$, two operations can be induced by considering the quotient of the space by such a lattice: wrapping and quantization. For a lattice $\Lambda$, and a fundamental domain $D$ which tiles $\mathbb{R}^n$ through $\Lambda$, the wrapped distribution over the quotient is obtained by summing the density over each coset, while the quantized distribution over the lattice is defined by integrating over each fundamental domain translation. These operations define wrapped and quantized random variables over $D$ and $\Lambda$, respectively, which sum up to the original random variable. We investigate information-theoretic properties of this decomposition, such as entropy, mutual information and the Fisher information matrix, and show that it naturally generalizes to the more abstract context of locally compact topological groups.


翻译:Euclidean 空间的全空格是一个由所有整数线性组合构成的离散设置。 根据$\ mathbb{R ⁇ n$ 的概率分布, 两种操作可以通过考虑空间的商数来诱导: 包装和量化。 对于一个tatice $\Lambda$, 和一个基本域$D$, 以$\mathbb{R ⁇ n$, 以$\Lambda$ 来拼写 。 将每组的密度进行组合, 并且通过对每个基本域的翻译进行量化分布定义。 这些操作分别定义了包装和四分的随机变量 $D$ 和 $\Lambda$, 这相当于原始的随机变量。 我们调查了这种分解的信息- 理论特性, 如 entropy、 相互信息 和 Fisher 信息矩阵, 并显示它自然地概括到更抽象的本地压缩的表层组的背景 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
51+阅读 · 2020年12月14日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
66+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员