Restricted Boltzmann Machines (RBMs) are effective tools for modeling complex systems and deriving insights from data. However, training these models with highly structured data presents significant challenges due to the slow mixing characteristics of Markov Chain Monte Carlo processes. In this study, we build upon recent theoretical advancements in RBM training, to significantly reduce the computational cost of training (in very clustered datasets), evaluating and sampling in RBMs in general. The learning process is analogous to thermodynamic continuous phase transitions observed in ferromagnetic models, where new modes in the probability measure emerge in a continuous manner. Such continuous transitions are associated with the critical slowdown effect, which adversely affects the accuracy of gradient estimates, particularly during the initial stages of training with clustered data. To mitigate this issue, we propose a pre-training phase that encodes the principal components into a low-rank RBM through a convex optimization process. This approach enables efficient static Monte Carlo sampling and accurate computation of the partition function. We exploit the continuous and smooth nature of the parameter annealing trajectory to achieve reliable and computationally efficient log-likelihood estimations, enabling online assessment during the training, and propose a novel sampling strategy named parallel trajectory tempering (PTT) which outperforms previously optimized MCMC methods. Our results show that this training strategy enables RBMs to effectively address highly structured datasets that conventional methods struggle with. We also provide evidence that our log-likelihood estimation is more accurate than traditional, more computationally intensive approaches in controlled scenarios. The PTT algorithm significantly accelerates MCMC processes compared to existing and conventional methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

受限玻尔兹曼机 是玻尔兹曼机(Boltzmann machine,BM)的一种特殊拓扑结构。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
2+阅读 · 2024年12月23日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员