Generative models that maximize model likelihood have gained traction in many practical settings. Among them, perturbation based approaches underpin many strong likelihood estimation models, yet they often face slow convergence and limited theoretical understanding. In this paper, we derive a tighter likelihood bound for noise driven models to improve both the accuracy and efficiency of maximum likelihood learning. Our key insight extends the classical KL divergence Fisher information relationship to arbitrary noise perturbations, going beyond the Gaussian assumption and enabling structured noise distributions. This formulation allows flexible use of randomized noise distributions that naturally account for sensor artifacts, quantization effects, and data distribution smoothing, while remaining compatible with standard diffusion training. Treating the diffusion process as a Gaussian channel, we further express the mismatched entropy between data and model, showing that the proposed objective upper bounds the negative log-likelihood (NLL). In experiments, our models achieve competitive NLL on CIFAR-10 and SOTA results on ImageNet across multiple resolutions, all without data augmentation, and the framework extends naturally to discrete data.


翻译:在许多实际应用中,最大化模型似然的生成模型已获得广泛关注。其中,基于扰动的学习方法构成了许多强似然估计模型的基础,但这些方法常面临收敛速度慢且理论理解有限的问题。本文针对噪声驱动模型推导出更紧致的似然界,以提升最大似然学习的准确性与效率。我们的核心洞见在于将经典的KL散度-费希尔信息关系推广至任意噪声扰动,突破了高斯假设的限制,使其能够处理结构化噪声分布。该公式允许灵活使用随机化噪声分布,这些分布能够自然表征传感器伪影、量化效应及数据分布平滑现象,同时保持与标准扩散训练的兼容性。通过将扩散过程视为高斯信道,我们进一步表达了数据与模型之间的失配熵,证明了所提出的目标函数是负对数似然(NLL)的上界。在实验中,我们的模型在CIFAR-10数据集上取得了具有竞争力的NLL结果,在ImageNet多个分辨率上均获得了当前最优性能,且均未使用数据增强技术。该框架还可自然地扩展至离散数据场景。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员