The development of smart systems (i.e., systems enhanced with AI components) has thrived thanks to the rapid advancements in neural networks (NNs). A wide range of libraries and frameworks have consequently emerged to support NN design and implementation. The choice depends on factors such as available functionalities, ease of use, documentation and community support. After adopting a given NN framework, organizations might later choose to switch to another if performance declines, requirements evolve, or new features are introduced. Unfortunately, migrating NN implementations across libraries is challenging due to the lack of migration approaches specifically tailored for NNs. This leads to increased time and effort to modernize NNs, as manual updates are necessary to avoid relying on outdated implementations and ensure compatibility with new features. In this paper, we propose an approach to automatically migrate neural network code across deep learning frameworks. Our method makes use of a pivot NN model to create an abstraction of the NN prior to migration. We validate our approach using two popular NN frameworks, namely PyTorch and TensorFlow. We also discuss the challenges of migrating code between the two frameworks and how they were approached in our method. Experimental evaluation on five NNs shows that our approach successfully migrates their code and produces NNs that are functionally equivalent to the originals. Artefacts from our work are available online.


翻译:智能系统(即集成人工智能组件的系统)的发展得益于神经网络(NNs)的快速进步而蓬勃发展。随之涌现出大量支持神经网络设计与实现的库和框架。选择取决于可用功能、易用性、文档和社区支持等因素。采用特定神经网络框架后,若性能下降、需求演变或引入新功能,组织后续可能选择切换至其他框架。遗憾的是,由于缺乏专门针对神经网络的迁移方法,跨库迁移神经网络实现具有挑战性。这导致神经网络现代化所需时间和精力增加,因为必须通过手动更新来避免依赖过时实现并确保与新功能的兼容性。本文提出一种跨深度学习框架自动迁移神经网络代码的方法。该方法利用枢轴神经网络模型在迁移前创建神经网络的抽象表示。我们使用两种主流神经网络框架(即PyTorch和TensorFlow)验证了该方法,并讨论了两框架间代码迁移的挑战及本方法的应对策略。在五个神经网络上的实验评估表明,本方法能成功迁移其代码并生成功能等效于原版的神经网络。本研究的实验材料已在线公开。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
【CMU博士论文】用于提升含优化层学习的算法与体系结构
AI智能体编程:技术、挑战与机遇综述
专知会员服务
40+阅读 · 2025年8月18日
【AI与医学】多模态机器学习精准医疗健康
【优青论文】深度神经网络压缩与加速综述
计算机研究与发展
17+阅读 · 2018年9月20日
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员