Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used throughout the DA workflow, clarifying the key variables in defining DA-applicable SV and the essential functionalities that SV can provide for data scientists. We condense four primary challenges of using SV in DA, namely computation efficiency, approximation error, privacy preservation, and interpretability, then disentangle the resolution techniques from existing arts in this field, analyze and discuss the techniques w.r.t. each challenge and potential conflicts between challenges. We also implement SVBench, a modular and extensible open-sourced framework for developing SV applications in different DA tasks, and conduct extensive evaluations to validate our analyses and discussions. Based on the qualitative and quantitative results, we identify the limitations of current efforts for applying SV to DA and highlight the directions of future research and engineering.


翻译:近年来,沙普利值(SV)作为一种源于合作博弈论的解概念,已在数据分析(DA)领域得到广泛应用。本文首次对贯穿整个DA工作流程的SV使用进行了全面研究,明确了定义适用于DA的SV的关键变量,以及SV能为数据科学家提供的基本功能。我们凝练了在DA中使用SV的四大主要挑战:计算效率、近似误差、隐私保护与可解释性,进而梳理了该领域现有研究中的解决技术,并针对每个挑战以及挑战间的潜在冲突对这些技术进行了分析和讨论。我们还实现了SVBench——一个模块化、可扩展的开源框架,用于开发不同DA任务中的SV应用,并进行了广泛的评估以验证我们的分析和讨论。基于定性和定量结果,我们指出了当前将SV应用于DA的研究存在的局限性,并展望了未来的研究方向和工程实践。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
84+阅读 · 2022年7月16日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
21+阅读 · 2022年12月20日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
84+阅读 · 2022年7月16日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员