This paper studies the principal components (PC) estimator for high dimensional approximate factor models with weak factors in that the factor loading ($\boldsymbol{\Lambda}^0$) scales sublinearly in the number $N$ of cross-section units, i.e., $\boldsymbol{\Lambda}^{0\top} \boldsymbol{\Lambda}^0 / N^\alpha$ is positive definite in the limit for some $\alpha \in (0,1)$. While the consistency and asymptotic normality of these estimates are by now well known when the factors are strong, i.e., $\alpha=1$, the statistical properties for weak factors remain less explored. Here, we show that the PC estimator maintains consistency and asymptotical normality for any $\alpha\in(0,1)$, provided suitable conditions regarding the dependence structure in the noise are met. This complements earlier result by Onatski (2012) that the PC estimator is inconsistent when $\alpha=0$, and the more recent work by Bai and Ng (2023) who established the asymptotic normality of the PC estimator when $\alpha \in (1/2,1)$. Our proof strategy integrates the traditional eigendecomposition-based approach for factor models with leave-one-out analysis similar in spirit to those used in matrix completion and other settings. This combination allows us to deal with factors weaker than the former and at the same time relax the incoherence and independence assumptions often associated with the later.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员