In this paper, we initiate the study of quantum algorithms in the Graph Drawing research area. We focus on two foundational drawing standards: 2-level drawings and book layouts. Concerning $2$-level drawings, we consider the problems of obtaining drawings with the minimum number of crossings, $k$-planar drawings, quasi-planar drawings, and the problem of removing the minimum number of edges to obtain a $2$-level planar graph. Concerning book layouts, we consider the problems of obtaining $1$-page book layouts with the minimum number of crossings, book embeddings with the minimum number of pages, and the problem of removing the minimum number of edges to obtain an outerplanar graph. We explore both the quantum circuit and the quantum annealing models of computation. In the quantum circuit model, we provide an algorithmic framework based on Grover's quantum search, which allows us to obtain, at least, a quadratic speedup on the best classical exact algorithms for all the considered problems. In the quantum annealing model, we perform experiments on the quantum processing unit provided by D-Wave, focusing on the classical $2$-level crossing minimization problem, demonstrating that quantum annealing is competitive with respect to classical algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月8日
Arxiv
0+阅读 · 2023年9月6日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年9月8日
Arxiv
0+阅读 · 2023年9月6日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员