We propose deep learning based communication methods for adaptive-bandwidth transmission of images over wireless channels. We consider the scenario in which images are transmitted progressively in layers over time or frequency, and such layers can be aggregated by receivers in order to increase the quality of their reconstructions. We investigate two scenarios, one in which the layers are sent sequentially, and incrementally contribute to the refinement of a reconstruction, and another in which the layers are independent and can be retrieved in any order. Those scenarios correspond to the well known problems of \textit{successive refinement} and \textit{multiple descriptions}, respectively, in the context of joint source-channel coding (JSCC). We propose DeepJSCC-$l$, an innovative solution that uses convolutional autoencoders, and present three architectures with different complexity trade-offs. To the best of our knowledge, this is the first practical multiple-description JSCC scheme developed and tested for practical information sources and channels. Numerical results show that DeepJSCC-$l$ can learn to transmit the source progressively with negligible losses in the end-to-end performance compared with a single transmission. Moreover, DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes, with the additional advantage of graceful degradation with channel SNR.


翻译:我们为无线频道图像的适应性带宽传输提出了基于深层次学习的通信方法。我们考虑了图像在时间或频率上逐步以层次递增的情景,这些层次可以由接收者汇总,以提高其重建质量。我们调查了两种情景,一种是分层按顺序发送,并逐步有助于完善重建,另一种是分层独立并可以按任何顺序检索。这些情景分别与众所周知的在时间或频率上递增图像的问题相对应。我们考虑的是,在联合源网连接(JSCC)的情况下,图像可逐步以层次递增的方式递增。我们建议,DepJSCC-1美元,这是一个创新的解决方案,使用革命性自动编码器,并提出了三种结构,其复杂程度各不相同。据我们所知,这是第一个为实际信息来源和渠道开发和测试的实用性多功能化联合通信中心计划。 数字化结果表明,在SEGJSC-l$的快速传输中,与S-NR-R-S的快速传输模式相比,其最终的递增性性性性性性性性表现,与S-NR-C-S-递增性递增性传输的单一状态相比,具有高度向性递增性递增性递增性运行性性性性性性表现。

0
下载
关闭预览

相关内容

【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员