Online Continual Learning (OCL) studies learning over a continuous data stream without observing any single example more than once, a setting that is closer to the experience of humans and systems that must learn "on-the-wild". Yet, commonly available benchmarks are far from these real-world conditions, because they explicitly signal different tasks, lack latent similarity structure or assume temporal independence between different examples. Here, we propose a new benchmark for OCL based on language modelling in which input alternates between different languages and domains without any explicit delimitation. Additionally, we propose new metrics to study catastrophic forgetting in this setting and evaluate multiple baseline models based on compositions of experts. Finally, we introduce a simple gating technique that learns the latent similarities between different inputs, improving the performance of a Products of Experts model.


翻译:在线持续学习(OCL)研究在连续数据流中学习,而不多次观察任何单一的例子,这种环境更接近于人类和必须学习“在世”的系统的经验。然而,一般的基准与现实世界的条件相去甚远,因为它们明确表明不同的任务,缺乏潜在的相似结构,或假定不同的例子之间具有时间独立性。这里,我们根据语言建模为OCL提出一个新的基准,在语言建模中输入不同语言和领域之间的交替物,而没有明确的划界。此外,我们提出新的衡量标准,以研究在这一设置中灾难性的遗忘,并根据专家的组成对多种基线模型进行评价。最后,我们引入了一种简单的格言技术,学习不同投入之间的潜在相似点,改进专家产品模型的性能。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
45+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
相关论文
Top
微信扫码咨询专知VIP会员