By combining a certain approximation property in the spatial domain, and weighted $\ell_2$-summability of the Hermite polynomial expansion coefficients in the parametric domain obtained in [M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, ESAIM Math. Model. Numer. Anal. $\bf 51$(2017), 341-363] and [M. Bachmayr, A. Cohen, D. D\~ung and C. Schwab, SIAM J. Numer. Anal. $\bf 55$(2017), 2151-2186], we investigate linear non-adaptive methods of fully discrete polynomial interpolation approximation as well as fully discrete weighted quadrature methods of integration for parametric and stochastic elliptic PDEs with lognormal inputs. We explicitly construct such methods and prove corresponding convergence rates in $n$ of the approximations by them, where $n$ is a number characterizing computation complexity. The linear non-adaptive methods of fully discrete polynomial interpolation approximation are sparse-grid collocation methods. Moreover, they generate in a natural way discrete weighted quadrature formulas for integration of the solution to parametric and stochastic elliptic PDEs and its linear functionals, and the error of the corresponding integration can be estimated via the error in the Bochner space $L_1({\mathbb R}^\infty,V,\gamma)$ norm of the generating methods where $\gamma$ is the Gaussian probability measure on ${\mathbb R}^\infty$ and $V$ is the energy space. We also briefly consider similar problems for parametric and stochastic elliptic PDEs with affine inputs, and by-product problems of non-fully discrete polynomial interpolation approximation and integration. In particular, the convergence rate of non-fully discrete obtained in this paper improves the known one.


翻译:通过将空间域的某些近似属性与[M. Bachmayr、A. Cohen、R. DeVore和G. Migliorati,ESAM Math. 模型. Numer. Anal. $bf 51美元(2017)、341-363和[M. Bachmayr、A. Cohen、D. D ⁇ ung和C. Schwab、SIAM J. Numer. Anal. $\bf 55(2017),2151-21186]在参数域中获取的赫米石墨多元多元多元扩张系数多元扩张系数系数的加权平衡系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数系数数值的数值数值数值数值数值数值数值数值数值。

0
下载
关闭预览

相关内容

最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年8月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员