Large Language Models (LLMs) are transforming software engineering tasks, including code vulnerability detection-a critical area of software security. However, existing methods often rely on resource-intensive models or graph-based techniques, limiting their accessibility and practicality. This paper introduces K-ASTRO, a lightweight Transformer model that combines semantic embeddings from LLMs with structural features of Abstract Syntax Trees (ASTs) to improve both efficiency and accuracy in code vulnerability detection. Our approach introduces an AST-based augmentation technique inspired by mutation testing, a structure-aware attention mechanism that incorporates augmented AST features, and a joint adaptation pipeline to unify code semantics and syntax. Experimental results on three large-scale datasets, including BigVul, DiverseVul, and PrimeVul-demonstrate state-of-the-art performance while enabling rapid inference on CPUs with minimal training time. By offering a scalable, interpretable, and efficient solution, K-ASTRO bridges the gap between LLM advancements and practical software vulnerability detection, providing open-sourced tools to foster further research.


翻译:大语言模型(LLMs)正在变革包括代码漏洞检测——这一软件安全关键领域——在内的软件工程任务。然而,现有方法通常依赖于资源密集型模型或基于图的技术,限制了其可访问性与实用性。本文提出K-ASTRO,一种轻量级Transformer模型,它结合了来自LLMs的语义嵌入与抽象语法树(ASTs)的结构特征,以提高代码漏洞检测的效率和准确性。我们的方法引入了一种受变异测试启发的基于AST的数据增强技术、一种融合增强AST特征的结构感知注意力机制,以及一个统一代码语义与语法的联合自适应流程。在包括BigVul、DiverseVul和PrimeVul在内的三个大规模数据集上的实验结果表明,该方法实现了最先进的性能,同时能在CPU上实现快速推理且训练时间极短。通过提供一个可扩展、可解释且高效的解决方案,K-ASTRO弥合了LLM进展与实际软件漏洞检测之间的鸿沟,并提供了开源工具以促进进一步研究。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员