Neuromorphic computing seeks to replicate the remarkable efficiency, flexibility, and adaptability of the human brain in artificial systems. Unlike conventional digital approaches, which depend on massive computational and energy resources, neuromorphic systems exploit brain-inspired principles of computation to achieve orders of magnitude greater energy efficiency. By drawing on insights from artificial intelligence, neuroscience, physics, chemistry, and materials science, neuromorphic computing promises to deliver intelligent systems that are sustainable, transparent, and widely accessible. A central challenge, however, is to identify a unifying theoretical framework capable of bridging these diverse disciplines. We argue that dynamical systems theory provides such a foundation. Rooted in differential calculus, it offers a principled language for modeling inference, learning, and control in both natural and artificial substrates. Within this framework, noise can be harnessed as a resource for learning, while differential genetic programming enables the discovery of dynamical systems that implement adaptive behaviors. Embracing this perspective paves the way toward emergent neuromorphic intelligence, where intelligent behavior arises from the dynamics of physical substrates, advancing both the science and sustainability of AI.


翻译:神经形态计算旨在人工系统中复现人脑卓越的效率、灵活性与适应性。与依赖海量计算和能源资源的传统数字方法不同,神经形态系统利用受大脑启发的计算原理,实现了数量级更高的能效。通过融合人工智能、神经科学、物理学、化学和材料科学等多学科洞见,神经形态计算有望构建可持续、透明且广泛可及的智能系统。然而,一个核心挑战在于建立能够贯通这些多元学科的统一理论框架。我们认为,动力系统理论为此提供了基础。该理论根植于微分运算,为自然与人工载体中的推理、学习和控制建模提供了原则性语言。在此框架内,噪声可作为学习资源加以利用,而微分遗传编程则能发现实现自适应行为的动力系统。接纳这一视角为涌现性神经形态智能开辟了道路——智能行为将从物理载体的动力学中自发产生,从而推动人工智能的科学性与可持续性发展。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月20日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2025年10月20日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员