Proving compositionality of behavioral equivalence on state-based systems with respect to algebraic operations is a classical and widely studied problem. We study a categorical formulation of this problem, where operations on state-based systems modeled as coalgebras can be elegantly captured through distributive laws between functors. To prove compositionality, it then suffices to show that this distributive law lifts from sets to relations, giving an explanation of how behavioral equivalence on smaller systems can be combined to obtain behavioral equivalence on the composed system. In this paper, we refine this approach by focusing on so-called codensity lifting of functors, which gives a very generic presentation of various notions of (bi)similarity as well as quantitative notions such as behavioral metrics on probabilistic systems. The key idea is to use codensity liftings both at the level of algebras and coalgebras, using a new generalization of the codensity lifting. The problem of lifting distributive laws then reduces to the abstract problem of constructing distributive laws between codensity liftings, for which we propose a simplified sufficient condition. Our sufficient condition instantiates to concrete proof methods for compositionality of algebraic operations on various types of state-based systems. We instantiate our results to prove compositionality of qualitative and quantitative properties of deterministic automata. We also explore the limits of our approach by including an example of probabilistic systems, where it is unclear whether the sufficient condition holds, and instead we use our setting to give a direct proof of compositionality. ...


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月1日
Arxiv
0+阅读 · 2024年7月1日
Arxiv
0+阅读 · 2024年6月30日
Arxiv
23+阅读 · 2022年2月24日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年7月1日
Arxiv
0+阅读 · 2024年7月1日
Arxiv
0+阅读 · 2024年6月30日
Arxiv
23+阅读 · 2022年2月24日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员