The real network has two characteristics: heterogeneity and homogeneity. A directed network model with covariates is proposed to analyze these two features, and the asymptotic theory of parameter Maximum likelihood estimators(MLEs) is established. However, in many practical cases, network data often carries a lot of sensitive information. How to achieve the trade-off between privacy and utility has become an important issue in network data analysis. In this paper, we study a directed $\beta$-model with covariates under differential privacy mechanism. It includes $2n$-dimensional node degree parameters $\boldsymbol{\theta}$ and a $p$-dimensional homogeneity parameter $\boldsymbol{\gamma}$ that describes the covariate effect. We use the discrete Laplace mechanism to release noise for the bi-degree sequences. Based on moment equations, we estimate the parameters of both degree heterogeneity and homogeneity in the model, and derive the consistency and asymptotic normality of the differentially private estimators as the number of nodes tends to infinity. Numerical simulations and case studies are provided to demonstrate the validity of our theoretical results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月29日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员