Event cameras like Dynamic Vision Sensors (DVS) report micro-timed brightness changes instead of full frames, offering low latency, high dynamic range, and motion robustness. DVS-PedX (Dynamic Vision Sensor Pedestrian eXploration) is a neuromorphic dataset designed for pedestrian detection and crossing-intention analysis in normal and adverse weather conditions across two complementary sources: (1) synthetic event streams generated in the CARLA simulator for controlled "approach-cross" scenes under varied weather and lighting; and (2) real-world JAAD dash-cam videos converted to event streams using the v2e tool, preserving natural behaviors and backgrounds. Each sequence includes paired RGB frames, per-frame DVS "event frames" (33 ms accumulations), and frame-level labels (crossing vs. not crossing). We also provide raw AEDAT 2.0/AEDAT 4.0 event files and AVI DVS video files and metadata for flexible re-processing. Baseline spiking neural networks (SNNs) using SpikingJelly illustrate dataset usability and reveal a sim-to-real gap, motivating domain adaptation and multimodal fusion. DVS-PedX aims to accelerate research in event-based pedestrian safety, intention prediction, and neuromorphic perception.


翻译:事件相机(如动态视觉传感器,DVS)以微秒级时间精度报告亮度变化而非完整帧,具有低延迟、高动态范围和运动鲁棒性。DVS-PedX(动态视觉传感器行人探索)是一个神经形态数据集,专为正常与恶劣天气条件下的行人检测和横穿意图分析而设计,包含两个互补来源:(1)在CARLA模拟器中生成的合成事件流,用于不同天气和光照下受控的“接近-横穿”场景;(2)通过v2e工具将真实世界JAAD行车记录仪视频转换而成的事件流,保留了自然行为与背景。每个序列包含配对的RGB帧、逐帧的DVS“事件帧”(33毫秒累积)以及帧级标签(横穿与非横穿)。我们还提供了原始的AEDAT 2.0/AEDAT 4.0事件文件、AVI DVS视频文件及元数据,以支持灵活的再处理。使用SpikingJelly构建的基准脉冲神经网络(SNN)展示了数据集的可用性,并揭示了仿真到现实的差距,从而推动了领域自适应与多模态融合的研究。DVS-PedX旨在加速基于事件的行人安全、意图预测及神经形态感知领域的研究。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2023年2月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员