Large Language Models (LLMs) have made it easier to create realistic fake profiles on platforms like LinkedIn. This poses a significant risk for text-based fake profile detectors. In this study, we evaluate the robustness of existing detectors against LLM-generated profiles. While highly effective in detecting manually created fake profiles (False Accept Rate: 6-7%), the existing detectors fail to identify GPT-generated profiles (False Accept Rate: 42-52%). We propose GPT-assisted adversarial training as a countermeasure, restoring the False Accept Rate to between 1-7% without impacting the False Reject Rates (0.5-2%). Ablation studies revealed that detectors trained on combined numerical and textual embeddings exhibit the highest robustness, followed by those using numerical-only embeddings, and lastly those using textual-only embeddings. Complementary analysis on the ability of prompt-based GPT-4Turbo and human evaluators affirms the need for robust automated detectors such as the one proposed in this study.


翻译:大型语言模型(LLMs)使得在LinkedIn等平台上创建逼真的虚假个人资料变得更加容易。这对基于文本的虚假个人资料检测器构成了重大风险。在本研究中,我们评估了现有检测器对LLM生成个人资料的鲁棒性。虽然现有检测器在检测人工创建的虚假个人资料方面非常有效(错误接受率:6-7%),但其无法识别GPT生成的个人资料(错误接受率:42-52%)。我们提出采用GPT辅助的对抗训练作为应对措施,将错误接受率恢复至1-7%之间,且不影响错误拒绝率(0.5-2%)。消融研究表明,在数值与文本嵌入组合特征上训练的检测器表现出最高的鲁棒性,其次是仅使用数值嵌入的检测器,而仅使用文本嵌入的检测器鲁棒性最低。对基于提示的GPT-4Turbo与人类评估者能力的补充分析证实,需要如本研究提出的这种鲁棒自动化检测器。

0
下载
关闭预览

相关内容

LinkedIn 是一家商业客户导向的社交网络服务网站,网站的目的是让注册用户维护他们在商业交往中认识并信任的联系人,这些人被称为“人脉”(Connections)。用户可以邀请他认识的人成为人脉。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员