In this work, we adopt Wyner common information framework for unsupervised multi-view representation learning. Within this framework, we propose two novel formulations that enable the development of computational efficient solvers based on the alternating minimization principle. The first formulation, referred to as the {\em variational form}, enjoys a linearly growing complexity with the number of views and is based on a variational-inference tight surrogate bound coupled with a Lagrangian optimization objective function. The second formulation, i.e., the {\em representational form}, is shown to include known results as special cases. Here, we develop a tailored version from the alternating direction method of multipliers (ADMM) algorithm for solving the resulting non-convex optimization problem. In the two cases, the convergence of the proposed solvers is established in certain relevant regimes. Furthermore, our empirical results demonstrate the effectiveness of the proposed methods as compared with the state-of-the-art solvers. In a nutshell, the proposed solvers offer computational efficiency, theoretical convergence guarantees (local minima), scalable complexity with the number of views, and exceptional accuracy as compared with the state-of-the-art techniques. Our focus here is devoted to the discrete case and our results for continuous distributions are reported elsewhere.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
127+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2023年6月9日
Arxiv
13+阅读 · 2020年8月3日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
127+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员