We study the problem of computing a rank-$k$ approximation of a matrix using randomized block Krylov iteration. Prior work has shown that, for block size $b = 1$ or $b = k$, a $(1 + \varepsilon)$-factor approximation to the best rank-$k$ approximation can be obtained after $\tilde O(k/\sqrt{\varepsilon})$ matrix-vector products with the target matrix. On the other hand, when $b$ is between $1$ and $k$, the best known bound on the number of matrix-vector products scales with $b(k-b)$, which could be as large as $O(k^2)$. Nevertheless, in practice, the performance of block Krylov methods is often optimized by choosing a block size $1 \ll b \ll k$. We resolve this theory-practice gap by proving that randomized block Krylov iteration produces a $(1 + \varepsilon)$-factor approximate rank-$k$ approximation using $\tilde O(k/\sqrt{\varepsilon})$ matrix-vector products for any block size $1\le b\le k$. Our analysis relies on new bounds for the minimum singular value of a random block Krylov matrix, which may be of independent interest. Similar bounds are central to recent breakthroughs on faster algorithms for sparse linear systems [Peng & Vempala, SODA 2021; Nie, STOC 2022].


翻译:我们研究利用随机分块Krylov迭代计算矩阵秩-$k$逼近的问题。已有研究表明,当分块大小$b = 1$或$b = k$时,通过与目标矩阵进行$\tilde O(k/\sqrt{\varepsilon})$次矩阵-向量乘积运算,可获得对最优秩-$k$逼近的$(1 + \varepsilon)$因子逼近。然而,当$b$介于$1$与$k$之间时,已知的矩阵-向量乘积次数最优上界与$b(k-b)$成正比,可能高达$O(k^2)$。但在实际应用中,通过选择$1 \ll b \ll k$的分块大小,分块Krylov方法的性能往往能达到最优。我们通过证明随机分块Krylov迭代在任意分块大小$1\le b\le k$下,仅需$\tilde O(k/\sqrt{\varepsilon})$次矩阵-向量乘积即可产生$(1 + \varepsilon)$因子近似的秩-$k$逼近,从而弥合了这一理论与实践的差距。我们的分析依赖于对随机分块Krylov矩阵最小奇异值的新界,该结果可能具有独立的理论价值。类似的界在稀疏线性系统快速算法的最新突破中具有核心作用[Peng & Vempala, SODA 2021; Nie, STOC 2022]。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
26+阅读 · 2020年2月21日
VIP会员
相关VIP内容
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
18+阅读 · 2021年3月16日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
26+阅读 · 2020年2月21日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员