The aim of this paper is to introduce a quantum fusion mechanism for multimodal learning and to establish its theoretical and empirical potential. The proposed method, called the Quantum Fusion Layer (QFL), replaces classical fusion schemes with a hybrid quantum-classical procedure that uses parameterized quantum circuits to learn entangled feature interactions without requiring exponential parameter growth. Supported by quantum signal processing principles, the quantum component efficiently represents high-order polynomial interactions across modalities with linear parameter scaling, and we provide a separation example between QFL and low-rank tensor-based methods that highlights potential quantum query advantages. In simulation, QFL consistently outperforms strong classical baselines on small but diverse multimodal tasks, with particularly marked improvements in high-modality regimes. These results suggest that QFL offers a fundamentally new and scalable approach to multimodal fusion that merits deeper exploration on larger systems.


翻译:本文旨在为多模态学习引入一种量子融合机制,并论证其理论与实证潜力。所提出的方法称为量子融合层(QFL),它通过一种混合量子-经典流程取代了经典的融合方案,该流程利用参数化量子电路来学习纠缠特征交互,而无需指数级参数增长。在量子信号处理原理的支持下,量子组件能以线性参数缩放高效地表示跨模态的高阶多项式交互,并且我们提供了一个QFL与基于低秩张量的方法之间的分离示例,突显了潜在的量子查询优势。在模拟实验中,QFL在小型但多样化的多模态任务上持续优于强大的经典基线方法,在高模态数量场景下改进尤为显著。这些结果表明,QFL为多模态融合提供了一种根本性的、可扩展的新途径,值得在更大规模的系统上进行更深入的探索。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员