We have selected six myths about the OSS community and have tested whether they are true or not. The purpose of this report is to identify the lessons that can be learned from the development style of the OSS community and the issues that need to be addressed in order to achieve better Employee Experience (EX) in software development within companies and organizations. The OSS community has been led by a group of skilled developers known as hackers. We have great respect for the engineers and activities of the OSS community and aim to learn from them. On the other hand, it is important to recognize that having high expectations can sometimes result in misunderstandings. When there are excessive expectations and concerns, misunderstandings (referred to as myths) can arise, particularly when individuals who are not practitioners rely on hearsay to understand the practices of practitioners. We selected the myths to be tested based on a literature review and interviews. These myths are held by software development managers and customers who are not direct participants in the OSS community. We answered questions about each myth through: 1) Our own analysis of repository data, 2) A literature survey of data analysis conducted by previous studies, or 3) A combination of the two approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月24日
Arxiv
0+阅读 · 2024年5月23日
Arxiv
26+阅读 · 2019年11月24日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年5月24日
Arxiv
0+阅读 · 2024年5月23日
Arxiv
26+阅读 · 2019年11月24日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
11+阅读 · 2018年5月13日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员