Classical machine learning (CML) has been extensively studied for malware classification. With the emergence of quantum computing, quantum machine learning (QML) presents a paradigm-shifting opportunity to improve malware detection, though its application in this domain remains largely unexplored. In this study, we investigate two hybrid quantum-classical models -- a Quantum Multilayer Perceptron (QMLP) and a Quantum Convolutional Neural Network (QCNN), for malware classification. Both models utilize angle embedding to encode malware features into quantum states. QMLP captures complex patterns through full qubit measurement and data re-uploading, while QCNN achieves faster training via quantum convolution and pooling layers that reduce active qubits. We evaluate both models on five widely used malware datasets -- API-Graph, EMBER-Domain, EMBER-Class, AZ-Domain, and AZ-Class, across binary and multiclass classification tasks. Our results show high accuracy for binary classification -- 95-96% on API-Graph, 91-92% on AZ-Domain, and 77% on EMBER-Domain. In multiclass settings, accuracy ranges from 91.6-95.7% on API-Graph, 41.7-93.6% on AZ-Class, and 60.7-88.1% on EMBER-Class. Overall, QMLP outperforms QCNN in complex multiclass tasks, while QCNN offers improved training efficiency at the cost of reduced accuracy.


翻译:经典机器学习(CML)在恶意软件分类领域已得到广泛研究。随着量子计算的出现,量子机器学习(QML)为改进恶意软件检测提供了范式转换的机遇,尽管其在该领域的应用仍基本处于探索阶段。本研究针对恶意软件分类任务,探究了两种混合量子-经典模型——量子多层感知器(QMLP)与量子卷积神经网络(QCNN)。两种模型均采用角度嵌入技术将恶意软件特征编码为量子态。QMLP通过全量子比特测量与数据重上传机制捕获复杂模式,而QCNN则借助量子卷积层与池化层减少活跃量子比特数量,从而实现更快的训练速度。我们在五个广泛使用的恶意软件数据集——API-Graph、EMBER-Domain、EMBER-Class、AZ-Domain与AZ-Class上,对两种模型在二分类与多分类任务中的性能进行了评估。实验结果显示:在二分类任务中,模型在API-Graph数据集上达到95-96%的准确率,在AZ-Domain数据集上达到91-92%,在EMBER-Domain数据集上达到77%;在多分类场景中,API-Graph数据集上的准确率范围为91.6-95.7%,AZ-Class数据集为41.7-93.6%,EMBER-Class数据集为60.7-88.1%。总体而言,QMLP在复杂多分类任务中表现优于QCNN,而QCNN则以牺牲部分准确率为代价提供了更高的训练效率。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2021年7月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员