Linear latent variable models such as principal component analysis (PCA), independent component analysis (ICA), canonical correlation analysis (CCA), and factor analysis (FA) identify latent directions (or loadings) either ordered or unordered. The data is then projected onto the latent directions to obtain their projected representations (or scores). For example, PCA solvers usually rank the principal directions by explaining the most to least variance, while ICA solvers usually return independent directions unordered and often with single sources spread across multiple directions as multiple sub-sources, which is of severe detriment to their usability and interpretability. This paper proposes a general framework to enhance latent space representations for improving the interpretability of linear latent spaces. Although the concepts in this paper are language agnostic, the framework is written in Python. This framework automates the clustering and ranking of latent vectors to enhance the latent information per latent vector, as well as, the interpretation of latent vectors. Several innovative enhancements are incorporated including latent ranking (LR), latent scaling (LS), latent clustering (LC), and latent condensing (LCON). For a specified linear latent variable model, LR ranks latent directions according to a specified metric, LS scales latent directions according to a specified metric, LC automatically clusters latent directions into a specified number of clusters, while, LCON automatically determines an appropriate number of clusters into which to condense the latent directions for a given metric. Additional functionality of the framework includes single-channel and multi-channel data sources, data preprocessing strategies such as Hankelisation to seamlessly expand the applicability of linear latent variable models (LLVMs) to a wider variety of data. The effectiveness of LR, LS, and LCON are showcased on two crafted foundational problems with two applied latent variable models, namely, PCA and ICA.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员