Derivative-based optimization techniques such as Stochastic Gradient Descent has been wildly successful in training deep neural networks. However, it has constraints such as end-to-end network differentiability. As an alternative, we present the Accelerated Neuroevolution algorithm. The new algorithm is aimed towards physical robotic learning tasks following the Experiential Robot Learning method. We test our algorithm first on a simulated task of playing the game Flappy Bird, then on a physical NAO robot in a static Object Centering task. The agents successfully navigate the given tasks, in a relatively low number of generations. Based on our results, we propose to use the algorithm in more complex tasks.


翻译:以衍生为基础的优化技术,如Stochastistic 梯子,在培养深层神经网络方面非常成功。 但是,它也有端到端网络差异等制约因素。 作为替代办法,我们介绍了加速神经进化算法。新的算法旨在根据实验机器人学习方法完成物理机器人学习任务。我们首先在模拟任务上测试我们的算法,即玩游戏飞禽游戏,然后在静态物体中心任务中用实际的NAO机器人。代理商在相对较少的几代人中成功地导航了给定任务。根据我们的结果,我们提议在更复杂的任务中使用算法。

0
下载
关闭预览

相关内容

【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
MIT新书《强化学习与最优控制》
专知会员服务
282+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员